Researchers have long attempted to produce a superconductor that works at room temperature and at a relatively low pressure. A team now claims that its material, dubbed “red matter”, has these properties
By Leah Crane
8 March 2023
A diamond anvil was used to create the material
Steve Jacobsen/Science Education Resource Center (SERC) at Carleton College
Room-temperature, room-pressure superconductivity has been a central goal of materials science for more than a century, and it may have finally been achieved. If this new superconducting material holds up, it could revolutionise the way our world is powered – but the results are headed for serious scientific scrutiny first.
When a material is superconductive, electricity flows through it with zero resistance, which means none of the energy involved is lost as heat. But every superconductor made so far has required extraordinarily high pressures, and most have required very low temperatures.
Ranga Dias at the University of Rochester in New York and his colleagues claim to have made a material from hydrogen, nitrogen and lutetium that becomes superconductive at a temperature of just 21°C (69°F) and a pressure of 1 gigapascal. That is nearly 10,000 times the atmospheric pressure on Earth’s surface, but still far lower pressure than any previous superconducting material. “Let’s say you were riding a horse in the 1940s when you see a Ferrari driving past you – that’s the level of difference between previous experiments and this one,” says Dias.
Advertisement
To make the material, they placed a combination of the three elements into a diamond anvil – a piece of machinery that compresses samples to extraordinarily high pressures between two diamonds – and squeezed. As the material was compressed, its colour changed from blue to red, leading the researchers to nickname it “red matter”.
The researchers then ran a series of tests examining the red matter’s electrical resistance and heat capacity, and how it interacted with an applied magnetic field. All the tests pointed towards the material being superconductive, they say.
But not all researchers in the field are convinced. “Perhaps they have discovered something absolutely groundbreaking and earth-shattering in this work, something that would win a Nobel prize, but I have some reservations,” says James Hamlin at the University of Florida.