Atom Computing has created the first quantum computer to surpass 1000 qubits, which could improve the accuracy of the machines
By Alex Wilkins
24 October 2023
The largest quantum computer yet built, created by Atom Computing
Atom Computing
The world’s first quantum computer to exceed 1000 qubits has more than double that of the previous record holder, IBM’s Osprey machine, which has 433 qubits. Though having more qubits doesn’t necessarily mean better performance, large numbers of them will be needed for future error-free quantum computers that are useful, unlike today’s noise-filled research machines.
The largest quantum computers, such as those from IBM and Google, use superconducting wires cooled to extremely low temperatures for their quantum bits, or qubits. But the record-breaking machine from California-based start-up Atom Computing, which has 1180 qubits, uses neutral atoms trapped by lasers in a 2-dimensional grid.
One advantage of this design is that it is easy to scale up the system and add many more qubits into the grid, says Rob Hays, CEO of Atom Computing. Any useful quantum computer in the future that is free of errors, a feature called fault tolerance, will need at least tens of thousands of dedicated error-correcting qubits working alongside the programmable qubits, he says.
Advertisement
Read more
Record-breaking number of qubits entangled in a quantum computer
“If we’re only going to scale by dozens of qubits, like most of the trapped ion and superconducting systems have been scaling up until now, it’s going to take a very long time to get to the fault tolerant era,” says Hays. “With the neutral atom approach and the speed of scaling that we have, we will be able to get there much more quickly.” Hays says the team aims to multiply the amount of qubits in the machine by around 10 every couple of years or so.
Unlike conventional computing bits, which can have a value of 1 or 0 and are largely interchangeable, qubits are more varied, having a range of different properties depending on how they are made.